II Semester M.Sc. Degree Examination, June 2016 (CBCS) CHEMISTRY

C - 201 : Inorganic Chemistry - II (Coordination Chemistry)

Time: 3 Hours Max. Marks: 70

Instruction: Answer question No. 1 and any five of the remaining.

Answer ten questions of the following :

(2×10=20)

- a) The value of ΔG⁰ for a complex formation was found to be 12.05 kJ/mol at 25°C. Calculate its stability constant (Given: R = 8.314 JK⁻¹ mol⁻¹).
- b) Expain why [Cu(en) (H2O)2]2+ is stabler than [Cu(NH3)2(H2O)2]2+?
- c) Explain the fact that in nitrosyl complexes, NO is capable of forming both linear and angular M-NO groups.
- d) Indicate the electrons arrangement in t_{2g} and e_g orbitals in [Ni(H₂O)₆]²⁺ and [FeCl₆]³⁻.
- e) Draw the possible geometrical isomers for [Cu(en)₂(H₂O)₂]²⁺ and indicate which ones are optically active?
- f) If Δ_0 value for $[CoCl_6]^4$ is 20,430 cm⁻¹, calculate the value of Δ_{Td} for $[CoCl_4]^2$.
- g) Find out the number of microstates possible for p² and d² systems.
- h) [CoCl₄]²⁻ complex has higher molar absorptivity value and intense colored compared to that of [Co(H₂O)₆]²⁺. Explain this observation.
- i) Give two differences between Orgel and Tanabe-Sugano diagrams.
- j) Both [Ni(CN)₄]²⁻ and [Ni(CO)₄] are in different geometries but magnetically similar. Explain this behavior.
- k) What is Nephelauxetic effect ? Explain.
- 1) Define quantum yield?
- a) Discuss any two evidences for metal-ligand orbital overlap.
 - b) Discuss the structure and bonding in Mn₂(CO)₁₀ and Fe₃(CO)₁₂.
 - Nature of the metal ion affects the stability of metal complexes. Explain with suitable examples. (3+4+3=10)

- 3 a) Discuss the factors affecting CFSE with suitable examples.
 - Set up the MO energy level diagram for [FeF₆]³ and calculate its spin-only magnetic moment.
 - c) What is spectrochemical series? Why is it called so?

(3+4+3=10)

- a) Discuss the splitting pattern of d-orbitals in [CoCl₄]²⁻. Show the electrons arrangement in each set of orbitals.
 - b) Discuss the bonding and structure of a tertiary phosphine complex of a transition metal.
 - c) What is meant by stereochemical non-rigidity? Explain how this phenomenon can be studied? (4+3+3=10)
- a) Calculate the values of B' and β for [V(H₂O)_B]²⁺ which exhibits absorption bands at 12340, 18500 and 27920 cm⁻¹ (Given : B for V²⁺ ion = 755 cm⁻¹). Assign these transitions.
 - b) Explain the following:
 - (i) Aqueous MnSO₄ solution is almost colorless while that of MnO₄⁻ is intense pink colored.
 - (ii) The experimental magnetic moment of copper acetate monohydrate is lower than its spin-only value.
 - c) Predict the possible transitions for [Fe(H)O)₆]²⁺ based on Orgel diagrams. (3+4+3=10)
- a) Describe the Faraday's method for the determination of magnetic susceptibility of a complex.
 - b) Discuss the effect of temperature on magnetic susceptibility of ferromagnetic and antiferromagnetic compounds.
 - c) How do ³F and ³P free ion terms of a d² metal ion get transformed in an octahedral crystal field? How many d-d transitions are expected? Assign there transitions.
 (3+4+3=10)
- a) How are stepwise stability constant and overall stability constant related?
 Describe method for the determination of the stability constant of a complex by spectrophotometric method.
 - b) Discuss the magnetic and spectral properties of lanthanide complexes.

(5+5=10)

- a) Explain the various types of photochemical reactions possible for Cr³⁺ and Co³⁺.
 - b) Write a brief note on solar energy conversion systems.
 - c) What is a spin-cross over system? Why this is not possible in a tetrahedral complex? (4+3+3=10)